D-3

COMPOSITIONAL, STRUCTURAL AND PHYSICAL STUDIES OF SOME GRAPHITE HEXAFLUOROARSENATES AND THEIR RELATIVES

Fujio Okino* and Neil Bartlett

Department of Chemistry and Molecular and Materials Research Division of Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 (U.S.A.)

The F/As molar ratio for the vacuum-stable products obtained by treating graphite, at 20° , with (1) AsF₅, (2) AsF₅ plus F₂, and (3) O₂AsF₆, has been established to be 6. Route (1) gives mixtures of first and second-stage salts, whereas (2) and (3) readily yield first-stage material. This is attributed to the greater oxidizing potential of the reagents in (2) and (3). The volatiles from the route (1) synthesis are AsF₅ and AsF₃, and from (2) AsF₅. The interlayer spacing (I_C) of the occupied graphite galleries in the vacuum-stable hexafluoroarsenates is ca. 7.6 Å and $\underline{c} \approx 7.6 + 3.35$ (n-1) Å (where n is the stage). For the products of routes (1) and (2), prior to removal of volatiles, I_C \approx 8.0 Å and $\underline{c} \approx$ 8.0 + 3.35(n-1) Å.

X-ray powder diffraction data for the first-stage salt $\rm C_{14} AsF_6$ have established that the $\rm AsF_6^-$ species are nestled in contiguous three-fold sets of C-atom hexagons of the graphite. This requires a staggering of the enclosing C-atom layers, as in graphite. Each neighboring pair of C-atom sheets contains an ordered closest-packed assembly, appropriate for $\rm C_{14} AsF_6$. Aside from the restriction imposed by $\rm AsF_6^-$ -nestling, the layers of composition $\rm C_{14} AsF_6$ are otherwise randomly stacked. Materials prepared by direct interaction of graphite and $\rm AsF_5$, prior to removal of volatiles, have a larger interlayer spacing, $\rm I_{_C} \approx 8.0~\AA$ than $\rm C_{14} AsF_6$ ($\rm I_{_C} \approx 7.6~\AA$). X-ray data for such materials are accounted for by a random distribution of un-nestled $\rm AsF_{_X}$ species, between eclipsed carbon-atom sheets.

The ${}^{\rm C}{}_{\rm X}{}^{\rm AsF}{}_{\rm 6}$ salts are all good conductors (approximately the conductivity of Al metal). Addition of fluorine to the salts decreases their conductivities substantially (approximately that of graphite).